Geometri Soru Portalım
Kümeler
Kümeler
A. TANIM
Küme, nesnelerin iyi tanımlanmış listesidir.
Kümeler genellikle A, B, C gibi büyük harflerle gösterilir.
Kümeyi oluşturan ögelere, kümenin elemanı denir. a elemanı A kümesine ait ise,
a Î A biçiminde yazılır. “a, A kümesinin elemanıdır.” diye okunur.
b elemanı A kümesine ait değilse, b Ï A biçiminde yazılır. “b, A kümesinin elemanı değildir.” diye okunur.
Kümede, aynı eleman bir kez yazılır.
Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez.
A kümesinin eleman sayısı s(A) ya da n(A) ile gösterilir.
B. KÜMELERİN GÖSTERİLİŞİ
Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.
1. Liste Yöntemi
Kümenin elemanları { } sembolü içine, her bir elemanın arasına virgül konularak yazılır.
A = {a, b, c} ise, s(A) = 3 tür.
2. Ortak Özelik Yöntemi
Kümenin elemanlarını; daha somut ya da daha kolay algılanır biçimde, gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir.
A = {x : (x in özeliği)}
Burada “x :” ifadesi “öyle x lerden oluşur ki” diye okunur.
Bu ifade “x |” biçiminde de yazılabilir.
3. Venn Şeması Yöntemi Küme, kapalı bir eğri içinde her eleman bir nokta ile gösterilip noktanın yanına elemanın adı yazılarak gösterilir. |
|
C. EŞİT KÜME, DENK KÜME
Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir.
A kümesi B kümesine eşit ise A = B,
C kümesi D kümesine denk ise C º D dir.
Eşit olan kümeler aynı zamanda denktir. Fakat denk kümeler eşit olmayabilir. |
D. EŞİT OLMAYAN (FARKLI) KÜMELER
Tamamen aynı elemanlardan oluşmayan kümelere eşit olmayan (farklı) kümeler denir.
A = {a, b, c}, B = {a, b, d} ise A ¹ B dir.
A = {1, b, 7}, B = {a, 2, d, 5} ise A ¹ B dir.
E. BOŞ KÜME
Hiç bir elemanı olmayan kümeye boş küme denir.
Boş küme { } ya da Æ sembolleri ile gösterilir.
{Æ} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir. |
F. ALT KÜME
A kümesinin her elemanı, B kümesinin de elemanı ise A ya B nin alt kümesi denir.
A kümesi B kümesinin alt kümesi ise A Ì B biçiminde gösterilir.
A kümesi B kümesinin alt kümesi ise B kümesi A kümesini kapsıyor denir.
B É A biçiminde gösterilir.
C kümesi D kümesinin alt kümesi değilse C Ë D biçiminde gösterilir.
Alt Kümenin Özelikleri
Her küme kendisinin alt kümesidir. A Ì A
Boş küme her kümenin alt kümesidir. Æ Ì A
(A Ì B ve B Ì A) Û A = B dir.
(A Ì B ve B Ì C) Ş A Ì C dir.
n elemanlı bir kümenin alt kümelerinin sayısı 2 üssü n dir. 3 elemanlı ise 2 üssü3 yani 2.2.2 = 8 elemanlıdır.
ÖZALT KÜME : Bir kümenin kendisi dışındaki tüm alt kümelerine denir.
Özalt küme sayısını veren formulde 2 üssü n den 1 çıkarılarak bulunur.
3 elemanlı kümenin özalt küme sayısı 2 üssü 3 =8, 8-1 =7 dir.
G. KÜMELERLE YAPILAN İŞLEMLER
1. Kümelerin Birleşimi
A nın elemanlarından veya B nin elemanlarından oluşan kümeye bu iki kümenin birleşim kümesi denir ve A È B biçiminde gösterilir.
2. Birleşim İşleminin Özelikleri
A È Æ = A
A È A = A
A È B = B È A
A È (B È C) = (A È B) È C
A Ì B ise, A È B = B
A È B = Æ ise, (A = Æ ve B = Æ) dir.
3. Kümelerin Kesişimi
A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir ve A Ç B biçiminde gösterilir.
4. Kesişim İşleminin Özelikleri
A Ç Æ = Æ
A Ç A = A
A Ç B = B Ç A
(A Ç B) Ç C = A Ç (B Ç C)
A Ç (B È C) = (A Ç B) È (A Ç C)
A È (B Ç C) = (A È B) Ç (A È C)
H. İKİ KÜMENİN FARKI
A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A B biçiminde gösterilir.
İ. ELEMAN SAYISI
A, B, C herhangi birer küme olmak üzere,
s(A È B) = s(A) + s(B) – s(A Ç B)
s(A È B È C) = s(A) + s(B) + s(C) – s(A Ç B) – s(A Ç C) – s(B Ç C) + s(A Ç B Ç C)
s(A È B) = s(A – B) + s(A Ç B) + s(B – A)
a + b + c + d tane öğrencinin bulunduğu bir sınıfta voleybol oynayan öğrencilerin sayısı s(V) = b + c, tenis oynayan öğrencilerin sayısı s(T) = a + b, voleybol ve tenis oynayan öğrencilerin sayısı s(T Ç V) = b olsun.
Tenis veya voleybol oynayanların sayısı: a + b + c
Sadece tenis oynayanların sayısı: a
Sadece voleybol oynayanların sayısı: c
Tenis oynamayanların sayısı: c + d
Voleybol oynamayanların sayısı: a + d
Bu iki oyundan en az birini oynayanların sayısı: a + b + c
Bu iki oyundan en çok birini oynayanların sayısı: d + a + c
Bu iki oyundan hiç birini oynamayanların sayısı: d